Close Menu
Şevket Ayaksız

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Save 45% on Anker’s Prime 6-in-1 USB-C Charger

    Mayıs 8, 2025

    Tariffs Force 8BitDo to Pause U.S. Deliveries

    Mayıs 8, 2025

    PC Manager App Now Displays Microsoft 365 Advertisements

    Mayıs 8, 2025
    Facebook X (Twitter) Instagram
    • software
    • Gadgets
    Facebook X (Twitter) Instagram
    Şevket AyaksızŞevket Ayaksız
    Subscribe
    • Home
    • Technology

      Ryzen 8000 HX Series Brings Affordable Power to Gaming Laptops

      Nisan 10, 2025

      Today only: Asus OLED laptop with 16GB RAM drops to $550

      Nisan 6, 2025

      Panther Lake: Intel’s Upcoming Hybrid Hero for PCs

      Nisan 5, 2025

      A new Xbox gaming handheld? Asus’ teaser video sparks speculation

      Nisan 2, 2025

      Now available—Coolify’s ‘holographic’ PC fans bring a unique visual effect

      Nisan 2, 2025
    • Adobe
    • Microsoft
    • java
    • Oracle
    Şevket Ayaksız
    Anasayfa » Combatting AI Hallucinations with RAG and Knowledge Graphs
    software

    Combatting AI Hallucinations with RAG and Knowledge Graphs

    By mustafa efeŞubat 21, 2025Yorum yapılmamış3 Mins Read
    Facebook Twitter Pinterest LinkedIn Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email

    Generative AI has made incredible strides in recent years, but its reliance on massive datasets still presents challenges. Large language models (LLMs) like OpenAI’s GPT-3 were trained on enormous data sets—such as the CommonCrawl data set, which contained 570 gigabytes of data and 400 billion tokens. These datasets are extensive but also static, meaning they can’t accommodate real-time information or adapt to new events. As a result, AI responses can become outdated, or worse, include hallucinations—plausible-sounding information that is, in reality, inaccurate. Even the best-performing LLMs, like OpenAI’s, still grapple with hallucination rates around 1.5 to 1.9 percent, according to Vectara’s Hallucination Leaderboard.

    The challenge with using LLMs on their own is twofold: the data can be stale, and the responses can be factually incorrect. However, companies have found a way to mitigate these issues by using data streaming to continually update their datasets and deploying retrieval-augmented generation (RAG). RAG combines the power of generative AI with real-time, relevant data, encoding a company’s business data in a way that enhances AI responses. By leveraging RAG, companies can ensure that AI models respond with more timely and accurate information.

    RAG works by creating a data set that can be searched for semantic matches to a user’s query. When the AI model receives a request, it searches for these matches and includes them in its response. The beauty of RAG lies in its ability to evolve over time. New data can be added to the vector data set, ensuring that AI responses stay up-to-date with the latest information. This process allows companies to harness the power of their own business data while reducing the risks of outdated or incorrect AI responses.

    However, implementing RAG isn’t without its challenges. One of the main obstacles occurs when dealing with large volumes of documents that contain similar or identical information. RAG may struggle when multiple documents share overlapping data, making it harder to retrieve the most relevant information. Additionally, RAG can face difficulties when the answer to a query spans multiple documents that cross-reference each other. This is where traditional RAG falls short, as it lacks an understanding of the relationships between documents. To overcome these limitations, Microsoft Research has proposed a solution called GraphRAG, which combines the strengths of knowledge graphs and RAG. By using knowledge graphs, which map relationships between different pieces of information, GraphRAG can ensure that the AI system pulls the most accurate, context-aware data, even in complex or cross-referenced scenarios. This hybrid approach promises to enhance the accuracy and reliability of AI-generated responses in real-world applications.

    Post Views: 37
    java Programming Languages Software Development
    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    mustafa efe
    • Website

    Related Posts

    PC Manager App Now Displays Microsoft 365 Advertisements

    Mayıs 8, 2025

    Microsoft Raises Xbox Series X Price by $100 Amid Global Adjustments

    Mayıs 8, 2025

    The Cot framework simplifies web development in Rust

    Nisan 29, 2025
    Add A Comment

    Comments are closed.

    Editors Picks
    8.5

    Apple Planning Big Mac Redesign and Half-Sized Old Mac

    Ocak 5, 2021

    Autonomous Driving Startup Attracts Chinese Investor

    Ocak 5, 2021

    Onboard Cameras Allow Disabled Quadcopters to Fly

    Ocak 5, 2021
    Top Reviews
    9.1

    Review: T-Mobile Winning 5G Race Around the World

    By sevketayaksiz
    8.9

    Samsung Galaxy S21 Ultra Review: the New King of Android Phones

    By sevketayaksiz
    8.9

    Xiaomi Mi 10: New Variant with Snapdragon 870 Review

    By sevketayaksiz
    Advertisement
    Demo
    Şevket Ayaksız
    Facebook X (Twitter) Instagram YouTube
    • Home
    • Adobe
    • microsoft
    • java
    • Oracle
    • Contact
    © 2025 Theme Designed by Şevket Ayaksız.

    Type above and press Enter to search. Press Esc to cancel.